Modeling a storage tank of carbon capture technology in a power plant in southern Iraq

Author:

M. Mansour Mustafa,M. Lafta Alaa,Salman Haider Sami,Nashee Sarah R.,Shkarah Ahmed J.

Abstract

The IEA's special study on CO2 collection, usage, and storage, released in 2020, estimates global CO2 capacity for storage to be among 8,000 and 55,000 gigatons. One of the most significant issues in introducing carbon into the energy market is improving carbon storage and developing more efficient distribution systems to increase the quantity of carbon that is held as liquid while decreasing storage pressure. The goal of this work is to investigate the efficiency of adsorption-based carbon-storing units from a "systems" perspective. The finite element approach, utilized in COMSOL Multi-physics™, is used to create an appropriate two-dimensional axisymmetric geometrical structure that balances energy, mass, and momentum based on thermodynamic extinction rules. We examine charging and discharging the storage unit with a rated pressure of 9 MPa and an initial temperature of 302 K.The storage tank is chilled using ice water. The research findings demonstrate that both simulated fluctuations in pressure and temperature during storage operations are extremely valuable. At the conclusion of charge time, the temperatures in the tank's center region are greater than those at the entry and along the wall, but at the end of discharge time, they are lower. The velocities are highest near the entry and progressively diminish throughout the tank's axis.  As a result, even the lowest possible number (8,000 Gt) substantially surpasses the 100 Gt of CO2 required to be stored by 2055 under the "sustainable development" scenario. The IEA analysis also states that the land potential exceeds the offshore potential. Land-based storage capacity is estimated to be between 6,000 and 42,000 Gt, while offshore capacity is estimated to be between 2,000 and 13,000 Gt, assuming only sites less than 300 kilometers from the coast, at depths less than 300 meters, and outside the Arctic and Antarctic zones. Development of a prediction model to improve knowledge of a novel CO2 adsorbent during the adsorbent-desorption cycle, taking into account all transport events. Validation of the model against published data for H2 storage. Predicting pressure and temperature dispersion at various storage tank sites.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3