Application of Graph Theory in DNA similarity analysis of Evolutionary Closed Species.

Author:

G. S. Wijesiri W. W. P. M. T. M. Karunasena,

Abstract

DNA is a complex molecule that consists of biological information that is passed down from generation to generation. With the evolution over time, there are different kinds of species that evolved from a common ancestor because of the occurrence of DNA sequence rearrangements. DNA sequence similarity analysis is a major challenge since the number of sequences is rapidly increasing in the DNA database. In this research, we based a mathematical method to analyze the similarity of two DNA sequences using Graph Theory. This mathematical method started by modeling a weighted directed graph for each DNA sequence, constructing its adjacency matrix, and converting it to the representative vector for each graph. From these vectors, the similarity was determined by distance measurements such as Euclidean, Cosine, and Correlation. By keeping this method as the based method, we will check whether it is applicable for any DNA fragments in considered genomes and molecular similarity coefficients can be used as distance measurements. We will obtain similarities using the graph spectrum instead of the representative vector. Then we will compare the results from the representative vector and that of the graph spectrum. The modified method is tested by using the mitochondrial DNA of Human, Gorilla, and Orangutan. It gives the same result when the number of nucleotides in DNA fragments is increased.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

General Psychology,Developmental and Educational Psychology,Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3