Effective Morphological Transformation and Sub-pixel Classification of Clustered Images

Author:

Mr. B. Naga Rajesh

Abstract

The main aim of this research work is to perform the morphological operations with reduced time complexity and area complexity. Morphological operation is the key element in any image processing. Finding the maximum and minimum using a window of defined size will imply to the morphological dilation and erosion respectively. So the proposed algorithm should be fast in the comparison and sorting, this way the time complexity could be reduced. It’s believed that the anchor concept will fetch this cause. The idea behind this is it fixes a pixel and setting it as the center pixel all the surrounding pixels will be processed. Moreover this is now been implemented for rectangular structuring element. This paper attempts the same for flat and 3D structuring elements. Hyper-spectral Imaging is a developing zone of remote detecting applications. Hyper-spectral pictures incorporate more extravagant and better otherworldly data than the multi-spectral pictures got previously. Hyper-otherworldly pictures are described by an exchange off between the unearthly and spatial resolution. The principle issue of the hyper-ghostly information is the generally low spatial goal. For arrangement, the serious issue brought about by low spatial goal is the blended pixels. Blended pixels alluded to the pixels which are involved by more than one land spread class. In the proposed procedure another strategy is utilized to address the issue of blended pixels and to get a better spatial goal of the land spread characterization maps. The strategy misuses the upsides of both picture bunching methods and phantom dimming calculations, so as to decide the fragmentary plenitudes of the classes at a sub-pixel scale. Spatial regularization by Flank planning method is at last performed to spatially find the got classes at sub-pixel level.

Publisher

Auricle Technologies, Pvt., Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3