Optimal workflow scheduling in cloud computing based on hybrid bacterial evolutionary and bees mating optimization algorithm

Author:

Dr Sunil Kumar Dinesh Kumar,

Abstract

Distributed computing is the most recent developing pattern in disseminated processing that conveys equipment framework and programming applications as administrations. The clients can devour these administrations dependent on a SLA which characterizes their required QoS parameters. By using the cloud computing technique it is possible to reduce the investment on various resources like computer hardware and software. The application or processes that are hosted and executed using clouds consist of set of tasks and it is considered that this task will form the workflow. Therefore scheduling the task is considered as a major issue as resource usage has to be maximized without affecting the services that are facilitated by the cloud. In order to execute different virtual machine application of the tasks are assigned and it is termed as enterprise arranging. In the scheduling process the inter-dependent tasks are mapped and managed in the distributed resources. For additional improvement, this paper proposes a hybrid optimization algorithm for workflow scheduling (HOWS) in cloud environment. In the proposed algorithm the first contribution is the bees mating optimization (BMO) algorithm used to share physical infrastructure to enable multiple service providers to optimize scheduling. The second contribution in the proposed algorithm is the bacterial evolutionary algorithm used to flexible access of the resources in order to optimize the network resources. By combining the hybrid optimization algorithm provides the better improvement in terms of task scheduling and optimal resource allocation. The result and performance analysis shows that the proposed technique performs very efficient in terms of energy efficiency and scalability without compromising security. The performance is obtained using cloudSim tool

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computational Theory and Mathematics,Computational Mathematics,General Mathematics,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Extended Intelligent Water Drop Strategy for Process Scheduler in Cloud;2021 5th International Conference on Information Systems and Computer Networks (ISCON);2021-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3