Motor-Imagery EEG Signals Classificationusing SVM, MLP and LDA Classifiers

Author:

Narayan Yogendra

Abstract

Electroencephalogram (EEG)signals based brain-computer interfacing (BCI) is the current technology trends in the field of rehabilitation robotic. This study compared the performance of support vector machine (SVM), linear discriminant analysis (LDA) and multi-layer perceptron (MLP) classifier with the combination of eight different features as a feature vector. EEG data were acquired from 20 healthy human subjects with predefined protocols. After the EEG signals acquisition, it was pre-processed followed by feature extraction and classification by using SVM MLP and LDA classifiers. The results exhibited that the SVM method was the best approach with 98.8% classification accuracy followed by MLP classifier. Finally, the SVM classifier and Arduino Mega controller was employed for offline controlling of the gripper of the robotic arm prototype. The finding of this study may be useful for online controlling as well as multi-degree of freedom with multi-class EEG dataset.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computational Theory and Mathematics,Computational Mathematics,General Mathematics,Education

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3