Question Classification for Efficient QA System

Author:

Et. al. K. P. Moholkar ,

Abstract

Natural Language Processing (NLP), a subfield of Artificial Intelligence (AI), supports the machine to understand and manipulate the human languages in different sectors.  Subsequently, the Question and answering scheme using Machine learning is a challengeable task. For an efficient QA system, understanding the category of a question plays a pivot role in extracting suitable answer. Computers can answer questions requiring single, verifiable answers but fail to answer subjective question demanding deeper understanding of question. Subjective questions can take different forms entailing deeper, multidimensional understanding of context. Identifying the intent of the question helps to extract expected answer from a given passage. Pretrained language models (LMs) have demonstrated excellent results on many language tasks. The paper proposes model of deep learning architecture in hierarchical pattern to learn the semantic of question and extracting appropriate answer. The proposed method converts the given context to fine grained embedding to capture semantic and positional representation, identifies user intent and employs a encoder model to concentrate on answer span. The proposed methods show a remarkable improvement over existing system  

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computational Theory and Mathematics,Computational Mathematics,General Mathematics,Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3