A Machine Learning-based Damage Prediction Techniques for Structural Health Monitoring

Author:

Et. al. M Vishnu Vardhana Rao,

Abstract

Nowadays, the Structural Building Health Damage Monitoring System (SBHDMS) is a crucial technology for predicting the civil building structures' health. SBHDMS contains abnormal changes in the buildings in terms of damage levels. Natural Disasters like Earthquakes, Floods, and cyclones affect the unusual changes in the buildings. If the building undergoes any natural disaster, the sensors capture the vibration data or change the buildings' structure. Due to the vibration data, these unusual changes can be analyzed. Here sensors or Machine Learning based Building Damage Prediction (MLBDP) are used for capturing and collecting the vibration data. This paper proposes a Novel Rough Set based Artificial Neural Network with Support Vector Machine (RAS) metaheuristic method. RAS method is used to predict the damaged building's vibration data levels captured by the sensors. For the feature reduction subset, we use one of the essential pre-processing method called the Rough set theory (RST) strategy. RAS has two contributions. The first one is the Support Vector Machine (SVM) classification method used for identifying the structures of the buildings. The artificial Neural Network (ANN) method used to predict the buildings' damage levels is the second contribution. The proposed method (RAS) is accurately predicting the conditions of the construction building structure and predicting the damage levels, without human intervention. Comparing the results states that the proposed method accuracy is better than SVM's classification methods, ANN. The prediction analysis depicts that the RAS method can effectively detect the damage levels.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computational Theory and Mathematics,Computational Mathematics,General Mathematics,Education

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frequency data driven damage detection of polymeric composite structural health using machine learning models;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2024-08-23

2. Novel ANOVA-Statistic-Reduced Deep Fully Connected Neural Network for the Damage Grade Prediction of Post-Earthquake Buildings;Sensors;2023-07-16

3. Cross Validated Canonical Variate Analysis for Damage Grading After Math of Earthquake Building;Information and Communication Technology for Competitive Strategies (ICTCS 2021);2022-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3