A Review of the cluster based Mobile Adhoc Network Intrusion Detection System

Author:

Et. al. T. Sushma,

Abstract

The Mobile Ad-hoc Network is decentralized and consisting of numerous different communication devices. Its distributed design and lack of infrastructure are the means of numerous network assaults. For personal computer users, companies, and the military, network security has become more important. Safety becomes a significant issue with the rise of the internet, and the past of security enables a better understanding of the evolution of security technology. Via the audit and monitoring phase, the implementation of Intrusion Detection Systems (IDS) in ad-hoc node securities was improved. This framework is made up of clustering protocols that are extremely efficient in finding intrusions with low resource and overhead computing costs. Current protocols have been related to routes that are not popular in intrusion detection. The cluster is barely impacted by the weak road layout and route renewal. The cluster is unpredictable and results in processing maximization together with network traffic. In general, battery-based ad hoc networks are organized and dependent on power constraints. To detect and react rapidly against intrusions, an active monitoring node is required. Only if the clusters are strong and extensive maintaining capabilities can it be accomplished. The routes also shift as the cluster shifts and it would not be feasible to prominently process the achievement of intrusion detection. This raises the need for a better clustering algorithm that addresses these disadvantages and guarantees the protection of the network in any way. A powerful clustering algorithm that is ahead of the current routing protocol is the cluster-based Intrusion Detection Method. Regardless of routes that perfectly track the intrusion, it is permanent. This streamlined technique of clustering achieves strong intrusion detection speeds with low processing as well as memory overhead. It also overcomes the other limitations of traffic, connections, and node mobility on the network, regardless of the routes. In detecting the attack or malicious node, the individual nodes in the network are not active.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computational Theory and Mathematics,Computational Mathematics,General Mathematics,Education

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic detection method for Android terminal malware based on Native layer;2023 4th International Conference on Computer Engineering and Application (ICCEA);2023-04-07

2. Maritime Mobile Communication System Based on Wireless Mobile Ad Hoc Network;Proceedings of the 4th International Conference on Big Data Analytics for Cyber-Physical System in Smart City - Volume 1;2023

3. Cluster Head Selection Based on Mapping-based Cuttlefish Optimization Algorithm for Multipath Routing in MANET;Computer Networks and Inventive Communication Technologies;2022-10-14

4. Network Security Protection Based on Deep Learning in Power Grid Information Construction;2022 Asian Conference on Frontiers of Power and Energy (ACFPE);2022-10

5. Deep embedded median clustering for routing misbehaviour and attacks detection in ad-hoc networks;Ad Hoc Networks;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3