Detect and Classify the Unpredictable Cyber-Attacks by using DNN Model

Author:

Et.al G. Swarnalatha

Abstract

Machine learning techniques are often used to develop IDS by detecting and deploying fast and automated network attacks to torpedoes and host standards. However, there are many problems, as severe attacks change all the time and occur at very high levels that require a lot of resolution. There are many malicious packages available for further investigation by the cybersecurity community. However, one completed study did not provide a complete analysis to apply different machine learning algorithms on different media packages. Because of the persistent methods of attack and the dynamic nature of malware, it is important to systematically update and approve malicious packages that are available to the public. This paper explores the DNN, a type of comprehensive learning model, promoting flexible and appropriate IDS for detecting and deploying expected and unpredictable online attacks. Sustainable industrial development and rapid development of attacks need evaluation for some data developed over the years using static and dynamic methods. This type of research can help determine the best algorithm to identify future attacks. Comparative data for some commonly available malware provides a comprehensive comparison of DNN experiences with other class machine learning classifications. The best network parameters and network topologies for DNN are selected using the KDDCup 99 package with this hyperparameter selection method. The DNN model, which works well on KDDCup 99, works on other data, such as the NSL-KDD memory test. Our DNN model teaches how to transfer IDS information functions from multicultural.Multidisciplinary representations in a variety of encryption. Complex tests have shown that DNN performs better than conventional machine learning classification. Finally, we present a large and hybrid DNN torrent structure called Scale-Hybrid-IDS-AlertNet, which can be used to effectively monitor the impact of network traffic and host-level events to warn directly about cyber-attacks.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computational Theory and Mathematics,Computational Mathematics,General Mathematics,Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3