Recognition and Digitization of Handwritten Text using Histogram of Gradients and Artificial Neural Network

Author:

Et al. Dr.S.K.Nivetha

Abstract

Handwriting recognition is one of the most persuasive and interesting projects as it is required in many real-life applications such as bank-check processing, postal-code recognition, handwritten notes or question paper digitization etc. Machine learning and deep learning methods are being used by developers to make computers more intelligent. A person learns how to execute a task by learning and repeating it over and over before it memorises the steps. The neurons in his brain will then be able to easily execute the task that he has mastered. This is also very close to machine learning. It employs a variety of architectures to solve various problems. Handwritten text recognition systems are models that capture and interpret handwritten numeric and character data from sources such as paper documents and photographs. For this application, a variety of machine learning algorithms were used. However, several limitations have been found, such as a large number of iterations, high training costs, and so on. Even though the other models have given impressive accuracy, it still has some drawbacks. In an unsupervised way, the Artificial Neural Network is used to learn effective data coding. For recognising real-world data, we built a model using Histogram of Oriented Gradients (HOG) and Artificial Neural Networks (ANN).

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computational Theory and Mathematics,Computational Mathematics,General Mathematics,Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bilingual Approach: Leveraging Deep Neural Network Techniques for Handwritten Signature Authentication;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

2. Convolutional Neural Network Based Multi Class Classification Model for Brain Tumor Diagnosis;2022 International Conference on Computer Communication and Informatics (ICCCI);2022-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3