Webpage Recommendation System Based on the Social Media Semantic Details of the Website

Author:

Et.al Dr. R.Rooba

Abstract

The web page recommendation is generated by using the navigational history from web server log files. Semantic Variable Length Markov Chain Model (SVLMC) is a web page recommendation system used to generate recommendation by combining a higher order Markov model with rich semantic data. The problem of state space complexity and time complexity in SVLMC was resolved by Semantic Variable Length confidence pruned Markov Chain Model (SVLCPMC) and Support vector machine based SVLCPMC (SSVLCPMC) meth-ods respectively. The recommendation accuracy was further improved by quickest change detection using Kullback-Leibler Divergence method. In this paper, socio semantic information is included with the similarity score which improves the recommendation accuracy. The social information from the social websites such as twitter is considered for web page recommendation. Initially number of web pages is collected and the similari-ty between web pages is computed by comparing their semantic information. The term frequency and inverse document frequency (tf-idf) is used to produce a composite weight, the most important terms in the web pages are extracted. Then the Pointwise Mutual Information (PMI) between the most important terms and the terms in the twitter dataset are calculated. The PMI metric measures the closeness between the twitter terms and the most important terms in the web pages. Then this measure is added with the similarity score matrix to provide the socio semantic search information for recommendation generation. The experimental results show that the pro-posed method has better performance in terms of prediction accuracy, precision, F1 measure, R measure and coverage.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computational Theory and Mathematics,Computational Mathematics,General Mathematics,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantic Web based Recommendation System in E-Commerce Websites;2022 International Conference on Smart and Sustainable Technologies in Energy and Power Sectors (SSTEPS);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3