Author:
Et. al. Khyrinaairinfariza Abu Samah,
Abstract
We present the real-world public sentiment expressed on Twitter using the proposed conceptual model (CM) to visualize the communication service providers (CSP) reputation during the Covid-19 pandemic in Malaysia from March 18 until August 18, 2020. The CM is a guideline that entails public tweets directly or indirectly mentioned to the three biggest CSP in Malaysia: Celcom, Maxis, and Digi. A text classifier model optimized for short snippets like tweets is developed to make bilingual sentiment analysis possible. The two languages explored are Bahasa Malaysia and English since they are the two most spoken languages in Malaysia. The classifier model is trained and tested on a huge multidomain dataset pre-labeled with the labels “0” and “1”, which resemble “positive” and “negative”, respectively. We used the Naïve Bayes (NB) technique as the core of the classifier model. Functionality testing has done to ensure no significant error that will render the application useless, and the accuracy testing score of 89% is considered quite impressive. We came out with the visualization through the word clouds and presented -56%, -42%, and -43% of Net Brand Reputation for Celcom, Maxis, and Digi.
Publisher
Auricle Technologies, Pvt., Ltd.
Subject
Computational Theory and Mathematics,Computational Mathematics,General Mathematics,Education
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献