A Study on Estimation and Prediction of Vector Time Series Model Using Financial Big Data (Interest Rates)

Author:

Chang-Ho An Jae-Hyun Kim,

Abstract

Due to the global economic downturn, the Korean economy continues to slump. Hereupon the Bank of Korea implemented a monetary policy of cutting the base rate to actively respond to the economic slowdown and low prices. Economists have been trying to predict and analyze interest rate hikes and cuts. Therefore, in this study, a prediction model was estimated and evaluated using vector autoregressive model with time series data of long- and short-term interest rates. The data used for this purpose were call rate (1 day), loan interest rate, and Treasury rate (3 years) between January 2002 and December 2019, which were extracted monthly from the Bank of Korea database and used as variables, and a vector autoregressive (VAR) model was used as a research model. The stationarity test of variables was confirmed by the ADF-unit root test. Bidirectional linear dependency relationship between variables was confirmed by the Granger causality test. For the model identification, AICC, SBC, and HQC statistics, which were the minimum information criteria, were used. The significance of the parameters was confirmed through t-tests, and the fitness of the estimated prediction model was confirmed by the significance test of the cross-correlation matrix and the multivariate Portmanteau test. As a result of predicting call rate, loan interest rate, and Treasury rate using the prediction model presented in this study, it is predicted that interest rates will continue to drop.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computational Theory and Mathematics,Computational Mathematics,General Mathematics,Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic spatial–temporal model for carbon emission forecasting;Journal of Cleaner Production;2024-07

2. Data block decomposition and intelligent secure acquisition of microdata;Scientific Reports;2023-04-04

3. An improved model for building energy consumption prediction based on time-series analysis;Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction;2023-03-20

4. Construction of Financial Investment Risk Measurement Model Based on Big Data;Cyber Security Intelligence and Analytics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3