Author:
Sharma Anamika Shukla,Hota Dr. H.S.
Abstract
ECG (Electrocardiogram) performs classification using a machine learning model for processing different features in the ECG signal. The electrical activity of the heart is computed with the ECG signal with machine learning library. The key issue in the handling of ECG signals is an estimation of irregularities to evaluate the health status of patients. The ECG signal evaluate the impulse waveform for the specialized tissues in the cardiac heart diseases. However, the ECG signal comprises of the different difficulties associated with waveform estimation to derive certain features. Through machine learning (ML) model the input features are computed with input ECG signals. In this paper, proposed a Noise QRS Feature to evaluate the features in the ECG signals for the effective classification. The Noise QRS Feature model computes the ECG signal features of the waveform sequences. Initially, the signal is pre-processed with the Finite Impulse response (FIR) filter for the analysis of ECG signal. The features in the ECG signal are processed and computed with the QRS signal responses in the ECG signal. The Noise QRS Feature evaluate the ECG signal with the kNN for the estimation and classification of features in the ECG signals. The performance of the proposed Noise QRS Feature features are comparatively examined with the Discrete Wavelet Transform (DWT), Dual-Tree Complex Wavelet Transforms (DTCWT) and Discrete Orthonormal Stockwell Transform (DOST) and the machine learning model Cascade Feed Forward Neural Network (CFNN), Feed Forward Neural Network (FFNN). Simulation analysis expressed that the proposed Noise QRS Feature exhibits a higher classification accuracy of 99% which is ~6 – 7% higher than the conventional classifier model.
Publisher
Auricle Technologies, Pvt., Ltd.
Subject
Computer Networks and Communications
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献