ECG Analysis-Based Cardiac Disease Prediction Using Signal Feature Selection with Extraction Based on AI Techniques

Author:

Sharma Anamika Shukla,Hota Dr. H.S.

Abstract

ECG (Electrocardiogram) performs classification using a machine learning model for processing different features in the ECG signal. The electrical activity of the heart is computed with the ECG signal with machine learning library. The key issue in the handling of ECG signals is an estimation of irregularities to evaluate the health status of patients. The ECG signal evaluate the impulse waveform for the specialized tissues in the cardiac heart diseases. However, the ECG signal comprises of the different difficulties associated with waveform estimation to derive certain features. Through machine learning (ML) model the input features are computed with input ECG signals. In this paper, proposed a Noise QRS Feature to evaluate the features in the ECG signals for the effective classification. The Noise QRS Feature model computes the ECG signal features of the waveform sequences.  Initially, the signal is pre-processed with the Finite Impulse response (FIR) filter for the analysis of ECG signal. The features in the ECG signal are processed and computed with the QRS signal responses in the ECG signal. The Noise QRS Feature evaluate the ECG signal with the kNN for the estimation and classification of features in the ECG signals. The performance of the proposed Noise QRS Feature features are comparatively examined with the Discrete Wavelet Transform (DWT), Dual-Tree Complex Wavelet Transforms (DTCWT) and Discrete Orthonormal Stockwell Transform (DOST) and the machine learning model Cascade Feed Forward Neural Network (CFNN), Feed Forward Neural Network (FFNN). Simulation analysis expressed that the proposed Noise QRS Feature exhibits a higher classification accuracy of 99% which is ~6 – 7% higher than the conventional classifier model.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computer Networks and Communications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploration of the Methods of Artificial Intelligence Computer Processing Information;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

2. Intelligent Identification Method of Segmented Line Loss of Low-Voltage Power Grid Based on Ant Colony Algorithm;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

3. Research on artificial intelligence machine translation based on BP neural algorithm;ICST Transactions on Scalable Information Systems;2024-02-08

4. Research on Enterprise Digital Transformation Under the All-Intelligent Network-Driven Approach;Lecture Notes in Electrical Engineering;2024

5. Research on English Phrase Translation based on Computer Intelligent Proofreading System;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3