Data Security Enhancement in 4G Vehicular Networks Based on Reinforcement Learning for Satellite Edge Computing

Author:

Lira Luis Alberto Núñez,Kumari Kukati Aruna,Raman Dr. Ramakrishnan,Kurniullah Ardhariksa Zukhruf,Morales Santiago Aquiles Gallarday,Cordero Tula Del Carmen Espinoza

Abstract

The vehicular network provides the dedicated short-range communication (DSRC) with IEEE 802.11p standard. The VANET model comprises of cellular vehicle-to-everything communication with wireless communication technology. Vehicular Edge Computing exhibits the promising technology to provide promising Intelligent Transport System Services. Smart application and urban computing. Satellite edge computing model is adopted in vehicular networks to provide services to the VANET communication for the management of computational resources for the end-users to provide access to low latency services for maximal execution of service. The satellite edge computing model implemented with the 4G vehicular communication network model subjected to data security issues. This paper presented a Route Computation Deep Learning Model (RCDL) to improve security in VANET communication with 4G technology. The RCDL model uses the route establishment model with the optimal route selection. The compute route is transmitted with the cryptographic scheme model for the selection of optimal route identified from the satellite edge computing model. The proposed RCDL scheme uses the deep learning-based reinforcement learning scheme for the attack prevention in the VANET environment employed with the 4G technology communication model. The simulation results expressed that proposed RCDL model achieves the higher PDR value of 98% which is ~6% higher than the existing model. The estimation of end-to-end delay is minimal for the RCDL scheme and improves the VANET communication.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computer Networks and Communications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3