Author:
Lira Luis Alberto Núñez,Kumari Kukati Aruna,Raman Dr. Ramakrishnan,Kurniullah Ardhariksa Zukhruf,Morales Santiago Aquiles Gallarday,Cordero Tula Del Carmen Espinoza
Abstract
The vehicular network provides the dedicated short-range communication (DSRC) with IEEE 802.11p standard. The VANET model comprises of cellular vehicle-to-everything communication with wireless communication technology. Vehicular Edge Computing exhibits the promising technology to provide promising Intelligent Transport System Services. Smart application and urban computing. Satellite edge computing model is adopted in vehicular networks to provide services to the VANET communication for the management of computational resources for the end-users to provide access to low latency services for maximal execution of service. The satellite edge computing model implemented with the 4G vehicular communication network model subjected to data security issues. This paper presented a Route Computation Deep Learning Model (RCDL) to improve security in VANET communication with 4G technology. The RCDL model uses the route establishment model with the optimal route selection. The compute route is transmitted with the cryptographic scheme model for the selection of optimal route identified from the satellite edge computing model. The proposed RCDL scheme uses the deep learning-based reinforcement learning scheme for the attack prevention in the VANET environment employed with the 4G technology communication model. The simulation results expressed that proposed RCDL model achieves the higher PDR value of 98% which is ~6% higher than the existing model. The estimation of end-to-end delay is minimal for the RCDL scheme and improves the VANET communication.
Publisher
Auricle Technologies, Pvt., Ltd.
Subject
Computer Networks and Communications
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献