Cyclostationary Algorithm for Signal Analysis in Cognitive 4G Networks with Spectral Sensing and Resource Allocation

Author:

Batyha Radwan M.,Janani Dr. S.,Hymlin Rose Dr. S. G.,Lolandes Yanina Gallardo,Ortiz Geovanny Genaro Reivan,Navaz Shahista

Abstract

Cognitive Radio (CR) effectively involved in the management of spectrum to perform improved data transmission. CR system actively engaged in the data sensing, learning and dynamic adjustment of radio spectrum parameters with management of unused spectrum in the signal. The spectrum sensing is indispensable in the CR for the management of Primary Users (PUs) and Secondary users (SUs) without any interference. Spectrum sensing is considered as the effective adaptive signal processing model to evaluate the computational complexity model for the signal transmission through Matched filtering, Waveform and Cyclostationary based Energy sensing model. Cyclostationary based model is effective for the energy based sensing model based on unique characteristics with estimation of available channel in the spectrum to extract the received signal in the PU signal. Cyclostationary based model uses the spectrum availability without any periodic property to extract the noise features. This paper developed a Adaptive Cross Score Cyclostationary (ACSCS) to evaluate the spectrum sensing in the CR network. The developed ACSCS model uses the computational complexity with estimation of Signal-to-Interference-and-Noise Ratio (SINR) elimination of cost function. ACSCS model uses the Adaptive Least square Spectral Self-Coherence Restoral (SCORE) with the Adaptive Cross Score (ACS) to overcome the issues in CR. With the derived ACSCS algorithm minimizes the computational complexity based on cost function compared with the ACS algorithm. To minimize the computational complexity pipeline triangular array based Gram-Schmidt Orthogonalization (GSO) structure for the optimization of network. The simulation performance analysis with the ACSCS scheme uses the Rician Multipath Fading channel to estimate detection probability to sense the Receiver Operating Characteristics, detection probability and probability of false alarm using Maximum Likelihood (ML) detector. The ACSC model uses the Square-law combining (SLC) with the moment generation function in the multipath fading channel for the channel sensing with reduced computational complexity. The simulation analysis expressed that ACSC scheme achieves the maximal detection probability value of 1. The analysis expressed that proposed ACSC scheme achieves the improved channel estimation in the 4G communication environment.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research step of PID control method of stepper motor based on improved fuzzy control algorithm;ICST Transactions on Scalable Information Systems;2024-02-26

2. Position information visualization analysis and personalized recommendation based on ant colony;ICST Transactions on Scalable Information Systems;2024-02-07

3. Application and Development of AI Algorithms and AI Engines in the Field of Multimedia Production and Media;2023 World Conference on Communication & Computing (WCONF);2023-07-14

4. Multi Touch Target Tracking Algorithm in Optical Multi-Touch Systems;2023 World Conference on Communication & Computing (WCONF);2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3