Improved Deep Hiding/Extraction Algorithm to Enhance the Payload Capacity and Security Level of Hidden Information

Author:

Ahmad Marwa,EL-Emam Nameer N.,AL-Azawi Ali F.

Abstract

Steganography algorithms have become a significant technique for preventing illegal users from obtaining secret data. In this paper, a deep hiding/extraction algorithm has been improved (IDHEA) to hide a secret message in colour images. The proposed algorithm has been applied to enhance the payload capacity and reduce the time complexity. Modified LSB (MLSB) is based on disseminating secret data randomly on a cover-image and has been proposed to replace a number of bits per byte (Nbpb), up to 4 bits, to increase payload capacity and make it difficult to access the hiding data. The number of levels of the IDHEA algorithm has been specified randomly; each level uses a colour image, and from one level to the next, the image size is expanded, where this algorithm starts with a small size of a cover-image and increases the size of the image gradually or suddenly at the next level, according to an enlargement ratio. Lossless image compression based on the run-length encoding algorithm and Gzip has been applied to enable the size of the data that is hiding at the next level, and data encryption using the Advanced Encryption Standard algorithm (AES) has been introduced at each level to enhance the security level. Thus, the effectiveness of the proposed IDHEA algorithm has been measured at the last level, and the performance of the proposed hiding algorithm has been checked by many statistical and visual measures in terms of the embedding capacity and imperceptibility. Comparisons between the proposed approach and previous work have been implemented; it appears that the intended approach is better than the previously modified LSB algorithms, and it works against visual and statistical attacks with excellent performance achieved by using the detection error (PE). Furthermore, the results confirmed that the stego-image with high imperceptibility has reached even a payload capacity that is large and replaces twelve bits per pixel (12-bpp). Moreover, testing is confirmed in that the proposed algorithm can embed secret data efficiently with better visual quality.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3