Edge Computing in Centralized Data Server Deployment for Network Qos and Latency Improvement for Virtualization Environment

Author:

Yadav Ashok Kumar,Sharma Ms. Bhanu,Bhagat Akash Kumar,Shah Dr. Harshal,C R Manjunath,Awasthi Mr. Aishwary

Abstract

With the advancement of Internet of Things (IoT), the network devices seem to be raising, and the cloud data centre load also raises; certain delay-sensitive services are not responded to promptly which leads to a reduced quality of service (QoS). The technique of resource estimation could offer the appropriate source for users through analyses of load of resource itself. Thus, the prediction of resource QoS was important to user fulfillment and task allotment in edge computing. This study develops a new manta ray foraging optimization with backpropagation neural network (MRFO-BPNN) model for resource estimation using quality of service (QoS) in the edge computing platform. Primarily, the MRFO-BPNN model makes use of BPNN algorithm for the estimation of resources in edge computing. Besides, the parameters relevant to the BPNN model are adjusted effectually by the use of MRFO algorithm. Moreover, an objective function is derived for the MRFO algorithm for the investigation of load state changes and choosing proper ones. To facilitate the enhanced performance of the MRFO-BPNN model, a widespread experimental analysis is made. The comprehensive comparison study highlighted the excellency of the MRFO-BPNN model.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Enterprise Digital Transformation Under the All-Intelligent Network-Driven Approach;Lecture Notes in Electrical Engineering;2024

2. Design Research of Computer Design Assistance Systems;2023 World Conference on Communication & Computing (WCONF);2023-07-14

3. Computer Network Security and Practical Technology Application in the Era of Big Data;2023 World Conference on Communication & Computing (WCONF);2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3