Optimization of Deep Convolutional Neural Network with the Integrated Batch Normalization and Global pooling

Author:

K K Priyanga,S Sabeen

Abstract

Deep convolutional neural networks (DCNN) have made significant progress in a wide range of applications in recent years, which include image identification, audio recognition, and translation of machine information. These tasks assist machine intelligence in a variety of ways. However, because of the large number of parameters, float manipulations and conversion of machine terminal remains difficult. To handle this issue, optimization of convolution in the DCNN is initiated that adjusts the characteristics of the neural network, and the loss of information is minimized with enriched performance. Minimization of convolution function addresses the optimization issues. Initially, batch normalization is completed, and instead of lowering neighborhood values, a full feature map is minimized to a single value using the global pooling approach. Traditional convolution is split into depth and pointwise to decrease the model size and calculations. The optimized convolution-based DCNN's performance is evaluated with the assistance of accuracy and occurrence of error. The optimized DCNN is compared with the existing state-of-the-art techniques, and the optimized DCNN outperforms the existing technique.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3