SVM Classifier on K-means Clustering Algorithm with Normalization in Data Mining for Prediction

Author:

Deep Vasu,Sharma Himanshu

Abstract

This work is belonging to K-means clustering algorithms classifier is used with this algorithm to classified data and Min Max normalization technique also used is to enhance the results of this work over simply K- Means algorithm. K-means algorithm is a clustering algorithm and basically used for discovering the cluster within a dataset. Here cancer dataset is used for this research work and dataset is classified in two categories – Cancer and Non-Cancer, after execution of the implemented algorithm with SVM and Normalization technique. The initial point selection effects on the results of the algorithm, both in the number of clusters found and their centroids. In this work enhance the k-means clustering algorithm methods are discussed. This technique helps to improve efficiency, accuracy, performance and computational time. Some enhanced variations improve the efficiency and accuracy of algorithm. The main of all methods is to decrees the number of iterations which will less computational time. K-means algorithm in clustering is most popular technique which is widely used technique in data mining. Various enhancements done on K-mean are collected, so by using these enhancements one can build a new proposed algorithm which will be more efficient, accurate and less time consuming than the previous work. More focus of this studies is to decrease the number of iterations which is less time consuming and second one is to gain more accuracy using normalization technique overall belonging to improve time and accuracy than previous studies.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3