Novel MobileNet based Multipath Convolutional Neural Network for defect detection in fabrics

Author:

Gnanaprakash V Et al.

Abstract

Automatic fabric defect detection and classification is the most important process in the textile industry to ensure the fabric quality. In the existing systems, a learning based method is used for detecting defects in plain weave fabrics. In this paper, a novel MobileNet based Multipath Convolutional Neural Network (MMPCNN) architecture is proposed for detection and classification of simple and complex patterned fabric defects. In the proposed MMPCNN architecture, MobileNet model is used in the first path. In this, Gabor filter bank is used instead of conventional filters in the first convolution layer. A simple convolutional neural network architecture with Gray Level Co-occurrence Matrix (GLCM) features as an input is used in the second path of the MMPCNN architecture.  Gabor filters are more useful for analyzing the texture with different orientations and scales. Each Gabor filter parameter has its own impact on analyzing the texture and extracting the information from the texture. Therefore, in this paper, the use of Gabor filter parameters in MMPCNN architecture is analyzed. The proposed model is experimented on the TILDA textile image database and it is able to achieve 100% accuracy with reduced trainable parameters for fabric defect detection and classification.

Publisher

Auricle Technologies, Pvt., Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Mining and Text Mining Approach: Query based Information Retrieval using Genetic Algorithm;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3