Hypervolume Sen Task Scheduilng and Multi Objective Deep Auto Encoder based Resource Allocation in Cloud

Author:

George Neema,B. K. Anoop

Abstract

Cloud Computing (CC) environment has restructured the Information Age by empowering on demand dispensing of resources on a pay-per-use base. Resource Scheduling and allocation is an approach of ascertaining schedule on which tasks should be carried out. Owing to the heterogeneity nature of resources, scheduling of resources in CC environment is considered as an intricate task. Allocating best resource for a cloud request remains a complicated task and the issue of identifying the best resource – task pair according to user requirements is considered as an optimization issue. Therefore the main objective of the Cloud Server remains in scheduling the tasks and allocating the resources in an optimal manner. In this work an optimized task scheduled resource allocation model is designed to effectively address  large numbers of task request arriving from cloud users, while maintaining enhanced Quality of Service (QoS). The cloud user task requests are mapped in an optimal manner to cloud resources. The optimization process is carried out using the proposed Multi-objective Auto-encoder Deep Neural Network-based (MA-DNN) method which is a combination of Sen’s Multi-objective functions and Auto-encoder Deep Neural Network model. First tasks scheduling is performed by applying Hypervolume-based Sen’s Multi-objective programming model. With this, multi-objective optimization (i.e., optimization of cost and time during the scheduling of tasks) is performed by means of Hypervolume-based Sen’s Multi-objective programming. Second, Auto-encoder Deep Neural Network-based Resource allocation is performed with the scheduled tasks that in turn allocate the resources by utilizing Jensen–Shannon divergence function. The Jensen–Shannon divergence function has the advantage of minimizing the energy consumption that only with higher divergence results, mapping is performed, therefore improving the energy consumption to a greater extent. Finally, mapping tasks with the corresponding resources using Kronecker Delta function improves the makespan significantly. To show the efficiency of Multi-objective Auto-encoder Deep Neural Network-based (MA-DNN) cloud time scheduling and optimization between tasks and resources in the CC environment, we also perform thorough experiments on the basis of realistic traces derived from Personal Cloud Datasets. The experimental results show that compared with RAA-PI-NSGAII and DRL, MA-DNN not only significantly accelerates the task scheduling efficiency, task scheduling time but also reduces the energy usage and makespan considerably.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Electrical and Electronic Engineering,Software,Information Systems,Human-Computer Interaction,Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3