A Novel Approach for Optimization of Convolution Neural Network with Particle Swarm Optimization and Genetic Algorithm for Face Recognition

Author:

P Kalaiarasi,Rani P. Esther

Abstract

Convolutional neural networks are contemporary deep learning models that are employed for many various applications. In general, the filter size, number of filters, number of convolutional layers, number of fully connected layers, activation function and learning rate are some of the hyperparameters that significantly determine how well a CNN performs.. Generally, these hyperparameters are selected manually and varied for each CNN model depending on the application and dataset. During optimization, CNN could get stuck in local minima. To overcome this, metaheuristic algorithms are used for optimization. In this work, the CNN structure is first constructed with randomly chosen hyperparameters and these parameters are optimized using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. A CNN with optimized hyperparameters is used for face recognition. CNNs optimized with these algorithms use RMSprop optimizer instead of stochastic gradient descent. This RMSprop optimizer helps the CNN reach global minimum quickly. It has been observed that optimizing with GA and PSO improves the performance of CNNs. It also reduces the time it takes for the CNN to reach the global minimum.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Electrical and Electronic Engineering,Software,Information Systems,Human-Computer Interaction,Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Objective Spectrum Allocation Scheme for Multi-User mmWave-assisted CRN-5G Networks;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3