An Overview of Context Capturing Techniques in NLP
-
Published:2023-04-10
Issue:4s
Volume:11
Page:193-198
-
ISSN:2321-8169
-
Container-title:International Journal on Recent and Innovation Trends in Computing and Communication
-
language:
-
Short-container-title:IJRITCC
Author:
Khem Dhawal,Panchal Shailesh,Bhatt Chetan
Abstract
In the NLP context identification has become a prominent way to overcome syntactic and semantic ambiguities. Ambiguities are unsolved problems but can be reduced to a certain level. This ambiguity reduction helps to improve the quality of several NLP processes, such as text translation, text simplification, text retrieval, word sense disambiguation, etc. Context identification, also known as contextualization, takes place in the preprocessing phase of NLP processes. The essence of this identification is to uniquely represent a word or a phrase to improve the decision-making during the transfer phase of the NLP processes. The improved decision-making helps to improve the quality of the output. This paper tries to provide an overview of different context-capturing mechanisms used in NLP.
Publisher
Auricle Technologies, Pvt., Ltd.
Subject
Electrical and Electronic Engineering,Software,Information Systems,Human-Computer Interaction,Computer Networks and Communications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimal Feature Learning for Speech Emotion Recognition – A DeepNet Approach;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28