Importance of Machine Vision Framework with Nondestructive Approach for Fruit Classification and Grading: A Review

Author:

D. Baswaraj Et al.

Abstract

Machine vision technology has gained significant importance in the agricultural industry, particularly in the non-destructive classification and grading of fruits. This paper presents a comprehensive review of the existing literature, highlighting the crucial role of machine vision in automating the fruit quality assessment process. The study encompasses various aspects, including image acquisition techniques, feature extraction methods, and classification algorithms. The analysis reveals the substantial progress made in the field, such as developing sophisticated hardware and software solutions, which have improved accuracy and efficiency in fruit grading. Furthermore, it discusses the challenges and limitations, such as dealing with variability in fruit appearance, handling different fruit types, and real-time processing. The identification of future research needs emphasizes the potential for enhancing machine vision frameworks through the integration of advanced technologies like deep learning and artificial intelligence.Additionally, it underscores the importance of addressing the specific needs of different fruit varieties and exploring the applicability of machine vision in real-world scenarios, such as fruit packaging and logistics. This review underscores the critical role of machine vision in non-destructive fruit classification and grading, with numerous opportunities for further research and innovation. As the agricultural industry continues to evolve, integrating machine vision technologies will be instrumental in improving fruit quality assessment, reducing food waste, and enhancing the overall efficiency of fruit processing and distribution.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Electrical and Electronic Engineering,Software,Information Systems,Human-Computer Interaction,Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3