Author:
Mathew Jincy C.,Ilango V.,Asha V.
Abstract
Globally, glaucoma is the most common factor in both permanent blindness and impairment. However, the majority of patients are unaware they have the condition, and clinical practise continues to face difficulties in detecting glaucoma progression using current technology. An expert ophthalmologist examines the retinal portion of the eye to see how the glaucoma is progressing. This method is quite time-consuming, and doing it manually takes more time. Therefore, using deep learning and machine learning techniques, this problem can be resolved by automatically diagnosing glaucoma. This systematic review involved a comprehensive analysis of various automated glaucoma prediction and detection techniques. More than 100 articles on Machine learning (ML) techniques with understandable graph and tabular column are reviewed considering summery, method, objective, performance, advantages and disadvantages. In the ML techniques such as support vector machine (SVM), and K-means. Fuzzy c-means clustering algorithm are widely used in glaucoma detection and prediction. Through the systematic review, the most accurate technique to detect and predict glaucoma can be determined which can be utilized for future betterment.
Publisher
Auricle Technologies, Pvt., Ltd.
Subject
Electrical and Electronic Engineering,Software,Information Systems,Human-Computer Interaction,Computer Networks and Communications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献