Real-Time Vehicle Accident Recognition from Traffic Video Surveillance using YOLOV8 and OpenCV

Author:

Mane Deepak T.,Sangve Sunil,Kandhare Sahil,Mohole Saurabh,Sonar Sanket,Tupare Satej

Abstract

The automatic detection of traffic accidents is a significant topic in traffic monitoring systems. It can reduce irresponsible driving behavior, improve emergency response, improve traffic management, and encourage safer driving practices. Computer vision can be a promising technique for automatic accident detection because it provides a reliable, automated, and speedy accident detection system that can improve emergency response times and ultimately save lives. This paper proposed an ensemble model that uses the YOLOv8 approach for efficient and precise event detection. The model framework's robustness is evaluated using YouTube video sequences with various lighting circumstances. The proposed model has been trained using the open-source dataset Crash Car Detection Dataset, and its produced precision, recall, and mAP are 93.8% and 98%, 96.1%, respectively, which is a significant improvement above the prior precision, recall, and mAP figures of 91.3%, 87.6%, and 93.8%. The effectiveness of the proposed approach in real-time traffic surveillance applications is proved by experimental results using actual traffic video data.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Electrical and Electronic Engineering,Software,Information Systems,Human-Computer Interaction,Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A method based on TSM for ego-crash recognition in dashcam videos;International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024);2024-06-13

2. Real-Time Vehicle Detection for Traffic Monitoring: A Deep Learning Approach;Data and Metadata;2024-01-01

3. Motor Vehicle Crash Detection Using Yolov8 Algorithm;2023 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3