Strategies for syphilis vaccine development

Author:

Giacani LorenzoORCID

Abstract

Research to identify a syphilis vaccine began shortly after the isolation of the first Treponema pallidum subspecies pallidum (T. pallidum) strain in 1912 by Nichols and Hough and the identification of several possible animal models for the infection, with the rabbit being the best one. During the century following T. pallidum isolation, none of the numerous immunization/challenge experiments performed with preparations ranging from whole-inactivated T. pallidum cells to recombinant proteins yielded an effective vaccine, and the search for a vaccine languished. Recently, however, scientific communities have experienced a resurgence in interest in developing a syphilis vaccine due to 1. the awareness that syphilis constitutes a tremendous burden for maternal health, particularly in low- and middle-income nations; 2. the improved understanding of the immunological processes leading to pathogen clearance during natural infection and of the mechanisms this pathogen developed to persist in the host; 3. the availability of a near-complete list of T. pallidum genes encoding putative surface-exposed antigens, which represent the most likely vaccine candidates; and, last but not least, 4. the effort made to expand the knowledge on the genetic and antigenic diversity of these vaccine candidates in strains circulating worldwide. Thus far, the most recent vaccine designs based on a subset of the pathogen’s surface-exposed antigens have provided immunized rabbits with a significant but incomplete protection upon infectious challenge. Nonetheless, the outcomes of these experiments help investigators refine strategies to achieve a formulation with the highest chances of moving from preclinical experimental settings to clinical trials. This editorial focuses on a subset of the strategies currently believed to be essential for vaccine development, namely, the improvement of our still limited understanding of the genomic diversity in T. pallidum strains from diverse geographical locations through the collection and isolation of modern syphilis strains and the identification of protective epitopes in potential vaccine targets by evaluating the ability of monoclonal antibodies to bind the target antigen and facilitate pathogen clearance. The use of genetic engineering of the syphilis spirochete to identify target surface proteins with an essential or near-essential role in T. pallidum biology to target in immunization/challenge experiments is also discussed.

Publisher

Zeppelini Editorial e Comunicacao

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3