Delimitation of water areas using remote sensing in Brazil’s semiarid region

Author:

Almeida Debora Natália Oliveira de1ORCID,Araújo Diêgo Cezar dos Santos1ORCID,Soares Débora Rodrigues1ORCID,Maia Francisco Marcelo de Alencar1ORCID,Montenegro Suzana Maria Gico Lima1ORCID,Santos Sylvana Melo dos1ORCID,Oliveira Leidjane Maria Maciel de1ORCID

Affiliation:

1. Universidade Federal de Pernambuco, Brazil

Abstract

Remote sensing techniques are of fundamental importance to investigate the changes occurred in the terrestrial mosaic over the years and contribute to the decision-making by increasing efficient environmental and water management. This article aimed to detect, demarcate and quantify the hydric area of Poço da Cruz reservoir, located in Ibimirim, Pernambuco, semiarid region of Brazil, with modeling based on Landsat 8/OLI satellite multispectral images from 2015 to 2020, and to relate it with data from the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) satellites average rainfall. For this purpose, the Modified Normalized Difference Water Index (MNDWI) was modeled, being produced georeferenced theme maps and extracted only the pixels represented by positive spectral values, which represent water targets. The open-access software Quantum Geographic Information System (QGIS, version 2.18.16) was used for all stages of digital image processing and connection with complementary databases on the theme maps elaboration. In the results, changes in the spatial distribution of Poço da Cruz were evidenced and analyzed using precipitation data from the CHIRPS product, allowing a better understanding of the rainfall behavior in the region and its influence. The MNDWI was lined with the CHIRPS product, in which the spatial correlation between the rainy event and the water area’s delimitation is documented, especially in October 2017 (minimum values) and October 2020 (maximum values).

Publisher

Zeppelini Editorial e Comunicacao

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3