In vitro co-inoculation of rhizobacteria from the semi-arid aiming at their implementation as bio-inoculants

Author:

Mesquita Ariel de Figueiredo Nogueira1ORCID,Bandeira Leonardo Lima1ORCID,Cavalcante Fernando Gouveia1ORCID,Ribeiro Gabrielly Alice Lima1ORCID,Martins Suzana Cláudia Silveira1ORCID,Martins Claudia Miranda1ORCID

Affiliation:

1. Universidade Federal do Ceará, Brazil

Abstract

The use of nitrogen fertilizers is of paramount importance for the supply of this nutrient to plants. However, the application of these fertilizers brings numerous environmental and health problems. An alternative to these chemical products would be the use of rhizobia — plant growth-promoting rhizobacteria naturally present in the rhizosphere and capable of carrying out biological nitrogen fixation. Through the present work, we propose the co-inoculation of Actinobacteria and rhizobia, aiming at the production of a new bio-inoculant that replaces, at least in part, nitrogen fertilization in legumes. It is expected that Actinobacteria, by producing exoenzymes, enable the growth of rhizobia in non-specific culture media for these microorganisms. Ten strains of Actinobacteria with statistically distinct cellulolytic and xylanolytic activity and seven strains of rhizobia without the aforementioned enzymatic activities were used. A co-inoculation of these microorganisms was performed in culture media containing carboxymethylcellulose (CMC) and xylan as sole carbon sources, and then their compatibility indexes (CI) were calculated. Actinobacteria strains A139 and A145 (both with CI = 0.857 in the medium with CMC and CI = 1 in the medium with xylan) showed remarkable facilitation of rhizobia growth, and had only one antagonistic relation each (both with rhizobia L9 in the medium with CMC). This biological interaction, called cross-feeding, occurs when microorganisms stimulate each other’s growth and is promising for prospecting a bio-inoculant, in addition to providing an overview of the ecological relationships that occur between plant growth-promoting rhizobacteria in the semi-arid region.

Publisher

Zeppelini Editorial e Comunicacao

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3