Cochlear Sources and Otoacoustic Emissions

Author:

Johnson Tiffany A.

Abstract

Current understanding suggests that there are two different mechanisms by which otoacoustic emissions (OAEs) are generated in the cochlea. These mechanisms include a nonlinear-distortion mechanism and a coherent-reflection mechanism. Distortion product OAEs (DPOAEs) are believed to include contributions from both mechanisms, while stimulus frequency OAEs (SFOAES), at least at low and moderate levels, are believed to be generated primarily by the coherent-reflection mechanism. In the case of DPOAEs, the interaction of the two mechanisms produces a series of alternating peaks and valleys in the response level when recorded in small frequency increments. This pattern of peaks and valleys typically is referred to as fine structure. There has been much speculation that the interaction of the two mechanisms and the resulting fine structure limits the clinical test performance of DPOAEs. There are few data to address this speculation. Here, we review the literature that describes the cochlear source mechanisms and their potential relationship to clinical applications. We then present results for preliminary data collected in a group of 10 normal-hearing subjects where we explore the influence of common approaches to setting DPOAE stimulus parameters on the resulting fine structure. These preliminary results suggest that, at the moderate stimulus levels used in clinical applications, each of the different stimulus parameters results in a similar amount of fine structure and, therefore, fine structure cannot be eliminated through manipulation of stimulus parameters. We also review the results of some preliminary efforts to identify stimulus parameters that can be used to record SFOAEs (OAEs generated by the reflection mechanism). The potential clinical applications of SFOAEs have received little attention in the literature. By identifying stimulus parameters producing robust responses in normal-hearing ears, it may be possible to more fully evaluate clinical applications of SFOAEs.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3