Test–Retest Reliability of Dual-Recorded Brainstem versus Cortical Auditory-Evoked Potentials to Speech

Author:

Bidelman Gavin M.123,Pousson Monique2,Dugas Calli2,Fehrenbach Amy2

Affiliation:

1. Institute for Intelligent Systems, University of Memphis, Memphis, TN

2. School of Communication Sciences and Disorders, University of Memphis, Memphis, TN

3. Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN

Abstract

AbstractAuditory-evoked potentials have proven useful in the objective evaluation of sound encoding at different stages of the auditory pathway (brainstem and cortex). Yet, their utility for use in clinical assessment and empirical research relies critically on the precision and test–retest repeatability of the measure.To determine how subcortical/cortical classes of auditory neural responses directly compare in terms of their internal consistency and test–retest reliability within and between listeners.A descriptive cohort study describing the dispersion of electrophysiological measures.Eight young, normal-hearing female listeners.We recorded auditory brainstem responses (ABRs), brainstem frequency-following responses (FFRs), and cortical (P1-N1-P2) auditory-evoked potentials elicited by speech sounds in the same set of listeners. We reassessed responses within each of four different test sessions over a period of 1 mo, allowing us to detect possible changes in latency/amplitude characteristics with finer detail than in previous studies.Our findings show that brainstem and cortical amplitude/latency measures are remarkably stable; with the exception of slight prolongation of the P1 wave, we found no significant variation in any response measure. Intraclass correlation analysis revealed that the speech-evoked FFR amplitude and latency measures achieved superior repeatability (intraclass correlation coefficient >0.85) among the more widely used obligatory brainstem (ABR) and cortical (P1-N1-P2) auditory-evoked potentials. Contrasting these intersubject effects, intrasubject variability (i.e., within-subject coefficient of variation) revealed that while latencies were more stable than amplitudes, brainstem and cortical responses did not differ in their variability at the single subject level.We conclude that (1) the variability of auditory neural responses increases with ascending level along the auditory neuroaxis (cortex > brainstem) between subjects but remains highly stable within subjects and (2) speech-FFRs might provide a more stable measure of auditory function than other conventional responses (e.g., click-ABR), given their lower inter- and intrasubject variability.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3