Differential Effects of Salicylate, Quinine, and Furosemide on Guinea Pig Inner and Outer Hair Cell Function Revealed by the Input–Output Relation of the Auditory Brainstem Response

Author:

Pienkowski Martin,Ulfendahl Mats

Abstract

Background: Sensory hearing loss is predominantly caused by the destruction of cochlear outer hair cells (OHCs), inner hair cells (IHCs), or spiral ganglion cells (SGCs). There have been a number of attempts to differentiate between these etiologies of hearing loss, using various psychoacoustic and physiologic paradigms. Purpose: Here we investigate the potential of the auditory brainstem response (ABR) input/output function for such differential diagnosis. On the basis of the saturation of the OHC-based cochlear amplifier, it was hypothesized that selective impairment of OHCs would reduce ABR amplitudes at low to moderate but not at high sound levels. Selective impairment of IHCs or SGCs would reduce ABR amplitudes more or less uniformly across sound level. Finally, a mix of OHC and IHC or SGC impairment would reduce ABR amplitudes at all sound levels but less so at high levels depending on the relative contribution of OHC impairment to the hearing loss. Research Design: To test these hypotheses, normal-hearing adult guinea pigs were intravenously injected with either salicylate, furosemide, or quinine, under ketamine anesthesia. ABRs, as well as distortion-product otoacoustic emissions (DPOAEs), were measured as a function of the sound stimulus level before and after drug injection. Results: Following salicylate injection, ABR amplitudes were reduced only at low–moderate stimulus levels. Following furosemide or quinine injection, ABR amplitudes were reduced at all levels but less so at high ones. This is in accord with the expectation that acute salicylate administration selectively affects the OHCs, while furosemide and quinine affect both OHCs and IHCs/SGCs. Such differential diagnosis was not possible solely on the basis of DPOAE amplitudes, which were unchanged at high stimulus levels after the injection of each of the three drugs. Comparison of ABR and DPOAE threshold shifts could also differentiate the effects of salicylate from those of furosemide and quinine but could not, for example, unequivocally point to salicylate's selective impairment of OHCs. Conclusions: ABR amplitudes appear suitable for differentiating between damage to OHCs and IHCs/SGCs, at least in a controlled experimental setting where pre- and postmanipulation data are available. This could be useful for noninvasively testing the effects of drugs or acoustic overstimulation on the cochlea, at least in the laboratory. Clinical applicability would seem to be limited by the high variability in ABR amplitudes among normal-hearing humans but might be feasible in the future if regular ABR testing entered into routine clinical practice.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3