Optimization of Programming Parameters in Children with the Advanced Bionics Cochlear Implant

Author:

Baudhuin Jacquelyn,Cadieux Jamie,Firszt Jill B.,Reeder Ruth M.,Maxson Jerrica L.

Abstract

Background: Cochlear implants provide access to soft intensity sounds and therefore improved audibility for children with severe-to-profound hearing loss. Speech processor programming parameters, such as threshold (or T-level), input dynamic range (IDR), and microphone sensitivity, contribute to the recipient's program and influence audibility. When soundfield thresholds obtained through the speech processor are elevated, programming parameters can be modified to improve soft sound detection. Adult recipients show improved detection for low-level sounds when T-levels are set at raised levels and show better speech understanding in quiet when wider IDRs are used. Little is known about the effects of parameter settings on detection and speech recognition in children using today's cochlear implant technology. Purpose: The overall study aim was to assess optimal T-level, IDR, and sensitivity settings in pediatric recipients of the Advanced Bionics cochlear implant. Research Design: Two experiments were conducted. Experiment 1 examined the effects of two T-level settings on soundfield thresholds and detection of the Ling 6 sounds. One program set T-levels at 10% of most comfortable levels (M-levels) and another at 10 current units (CUs) below the level judged as “soft.” Experiment 2 examined the effects of IDR and sensitivity settings on speech recognition in quiet and noise. Study Sample: Participants were 11 children 7–17 yr of age (mean 11.3) implanted with the Advanced Bionics High Resolution 90K or CII cochlear implant system who had speech recognition scores of 20% or greater on a monosyllabic word test. Data Collection and Analysis: Two T-level programs were compared for detection of the Ling sounds and frequency modulated (FM) tones. Differing IDR/sensitivity programs (50/0, 50/10, 70/0, 70/10) were compared using Ling and FM tone detection thresholds, CNC (consonant-vowel nucleus-consonant) words at 50 dB SPL, and Hearing in Noise Test for Children (HINT-C) sentences at 65 dB SPL in the presence of four-talker babble (+8 signal-to-noise ratio). Outcomes were analyzed using a paired t-test and a mixed-model repeated measures analysis of variance (ANOVA). Results: T-levels set 10 CUs below “soft” resulted in significantly lower detection thresholds for all six Ling sounds and FM tones at 250, 1000, 3000, 4000, and 6000 Hz. When comparing programs differing by IDR and sensitivity, a 50 dB IDR with a 0 sensitivity setting showed significantly poorer thresholds for low frequency FM tones and voiced Ling sounds. Analysis of group mean scores for CNC words in quiet or HINT-C sentences in noise indicated no significant differences across IDR/sensitivity settings. Individual data, however, showed significant differences between IDR/sensitivity programs in noise; the optimal program differed across participants. Conclusions: In pediatric recipients of the Advanced Bionics cochlear implant device, manually setting T-levels with ascending loudness judgments should be considered when possible or when low-level sounds are inaudible. Study findings confirm the need to determine program settings on an individual basis as well as the importance of speech recognition verification measures in both quiet and noise. Clinical guidelines are suggested for selection of programming parameters in both young and older children.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3