Bimodal Cochlear Implant Listeners’ Ability to Perceive Minimal Audible Angle Differences

Author:

Zaleski-King Ashley1,Goupell Matthew J.2,Barac-Cikoja Dragana1,Bakke Matthew1

Affiliation:

1. Department of Speech and Hearing Sciences, Gallaudet University, Washington, DC

2. Department of Hearing and Speech Sciences, University of Maryland College Park, College Park, MD

Abstract

AbstractBilateral inputs should ideally improve sound localization and speech understanding in noise. However, for many bimodal listeners [i.e., individuals using a cochlear implant (CI) with a contralateral hearing aid (HA)], such bilateral benefits are at best, inconsistent. The degree to which clinically available HA and CI devices can function together to preserve interaural time and level differences (ITDs and ILDs, respectively) enough to support the localization of sound sources is a question with important ramifications for speech understanding in complex acoustic environments.To determine if bimodal listeners are sensitive to changes in spatial location in a minimum audible angle (MAA) task.Repeated-measures design.Seven adult bimodal CI users (28–62 years). All listeners reported regular use of digital HA technology in the nonimplanted ear.Seven bimodal listeners were asked to balance the loudness of prerecorded single syllable utterances. The loudness-balanced stimuli were then presented via direct audio inputs of the two devices with an ITD applied. The task of the listener was to determine the perceived difference in processing delay (the interdevice delay [IDD]) between the CI and HA devices. Finally, virtual free-field MAA performance was measured for different spatial locations both with and without inclusion of the IDD correction, which was added with the intent to perceptually synchronize the devices.During the loudness-balancing task, all listeners required increased acoustic input to the HA relative to the CI most comfortable level to achieve equal interaural loudness. During the ITD task, three listeners could perceive changes in intracranial position by distinguishing sounds coming from the left or from the right hemifield; when the CI was delayed by 0.73, 0.67, or 1.7 msec, the signal lateralized from one side to the other. When MAA localization performance was assessed, only three of the seven listeners consistently achieved above-chance performance, even when an IDD correction was included. It is not clear whether the listeners who were able to consistently complete the MAA task did so via binaural comparison or by extracting monaural loudness cues. Four listeners could not perform the MAA task, even though they could have used a monaural loudness cue strategy.These data suggest that sound localization is extremely difficult for most bimodal listeners. This difficulty does not seem to be caused by large loudness imbalances and IDDs. Sound localization is best when performed via a binaural comparison, where frequency-matched inputs convey ITD and ILD information. Although low-frequency acoustic amplification with a HA when combined with a CI may produce an overlapping region of frequency-matched inputs and thus provide an opportunity for binaural comparisons for some bimodal listeners, our study showed that this may not be beneficial or useful for spatial location discrimination tasks. The inability of our listeners to use monaural-level cues to perform the MAA task highlights the difficulty of using a HA and CI together to glean information on the direction of a sound source.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3