Optimum Response Filter Setting for Air Conduction–Induced Ocular Vestibular Evoked Myogenic Potential

Author:

Singh Niraj Kumar1,Thirunavukkarasu Kumaran1,Barman Animesh1

Affiliation:

1. Department of Audiology, All India Institute of Speech and Hearing, Mysore, India

Abstract

AbstractA wide range of normative values of amplitude and latencies can be noticed in the publications on ocular vestibular evoked myogenic potential (oVEMP), possibly because of the inconsistent use of various stimulus and acquisition-related parameters such as response filter, gaze angle, onset polarity of stimulus, etc. One major nonuniform parameter across studies is the response filter. Several band-pass response filters such as 0.5–500, 1–1000, 5–500, 5–800, 10–750, 20–2000, 100–3000, and 200–1000 Hz have been used across published studies, and a wide range of normative values can be noticed. However, there is paucity of literature evidence to show that variations in response filters could cause alterations in oVEMP response.This study aimed to investigate the effects of changes in response filter setting on oVEMP.Normative study using repeated measures research design.Young adults in the age range of 18–35 years (N = 150) and older adults in the age range of 60–70 years (N = 10).Contralateral air conduction oVEMP.Contralateral air conduction oVEMP was obtained from only one ear of all participants. Low-pass filters (LPFs) of 500, 700, 1000, 1500, 2000, and 3000 Hz and high-pass filters (HPFs) of 0.1, 1, 10, and 30 Hz were used in all possible combinations of one LPF and one HPF to create band-pass filters. Latencies, peak-to-peak amplitude, and signal-to-noise ratio (SNR) were obtained for each response and comparison was made between various band-pass filters.In young adults, there was a significant reduction in n1 and p1 latencies with increasing HPF and LPF (p < 0.01) and a significant reduction in peak-to-peak amplitude with increasing HPF (p < 0.008). The peak-to-peak amplitude was significantly not affected by changes in LPF (p > 0.05). In older adults, the response rate was better for 0.1- to 1000-Hz than 1- to 1000-Hz band-pass filters.The optimum band-pass filter is 0.1–1000 Hz for recording oVEMP as it produces the largest amplitude oVEMP without compromising on SNR and causes improved response rate in older adults compared with 1- to 1000-Hz filters. Therefore, clinical recording of oVEMP should use 0.1–1000 Hz for obtaining large amplitude potentials and improving the chances of response detection in clinical population.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimum response of air-conduction induced ocular vestibular evoked myogenic potential in drivers;Indian Journal of Occupational and Environmental Medicine;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3