Hearing with Two Ears: Evidence for Cortical Binaural Interaction during Auditory Processing

Author:

Henkin Yael,Yaar-Soffer Yifat,Givon Lihi,Hildesheimer Minka

Abstract

Background: Integration of information presented to the two ears has been shown to manifest in binaural interaction components (BICs) that occur along the ascending auditory pathways. In humans, BICs have been studied predominantly at the brainstem and thalamocortical levels; however, understanding of higher cortically driven mechanisms of binaural hearing is limited. Purpose: To explore whether BICs are evident in auditory event-related potentials (AERPs) during the advanced perceptual and postperceptual stages of cortical processing. Research Design: The AERPs N1, P3, and a late negative component (LNC) were recorded from multiple site electrodes while participants performed an oddball discrimination task that consisted of natural speech syllables (/ka/ vs. /ta/) that differed by place-of-articulation. Participants were instructed to respond to the target stimulus (/ta/) while performing the task in three listening conditions: monaural right, monaural left, and binaural. Study Sample: Fifteen (21–32 yr) young adults (6 females) with normal hearing sensitivity. Data Collection and Analysis: By subtracting the response to target stimuli elicited in the binaural condition from the sum of responses elicited in the monaural right and left conditions, the BIC waveform was derived and the latencies and amplitudes of the components were measured. The maximal interaction was calculated by dividing BIC amplitude by the summed right and left response amplitudes. In addition, the latencies and amplitudes of the AERPs to target stimuli elicited in the monaural right, monaural left, and binaural listening conditions were measured and subjected to analysis of variance with repeated measures testing the effect of listening condition and laterality. Results: Three consecutive BICs were identified at a mean latency of 129, 406, and 554 msec, and were labeled N1-BIC, P3-BIC, and LNC-BIC, respectively. Maximal interaction increased significantly with progression of auditory processing from perceptual to postperceptual stages and amounted to 51%, 55%, and 75% of the sum of monaural responses for N1-BIC, P3-BIC, and LNC-BIC, respectively. Binaural interaction manifested in a decrease of the binaural response compared to the sum of monaural responses. Furthermore, listening condition affected P3 latency only, whereas laterality effects manifested in enhanced N1 amplitudes at the left (T3) vs. right (T4) scalp electrode and in a greater left–right amplitude difference in the right compared to left listening condition. Conclusions: The current AERP data provides evidence for the occurrence of cortical BICs during perceptual and postperceptual stages, presumably reflecting ongoing integration of information presented to the two ears at the final stages of auditory processing. Increasing binaural interaction with the progression of the auditory processing sequence (N1 to LNC) may support the notion that cortical BICs reflect inherited interactions from preceding stages of upstream processing together with discrete cortical neural activity involved in binaural processing. Clinically, an objective measure of cortical binaural processing has the potential of becoming an appealing neural correlate of binaural behavioral performance.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3