Speech Recognition in Noise in Single-Sided Deaf Cochlear Implant Recipients Using Digital Remote Wireless Microphone Technology

Author:

Wesarg Thomas1,Arndt Susan1,Wiebe Konstantin1,Schmid Frauke12,Huber Annika12,Mülder Hans E.3,Laszig Roland1,Aschendorff Antje1,Speck Iva1

Affiliation:

1. Department of Otorhinolaryngology—Head and Neck Surgery, Medical Center—University of Freiburg, Faculty of Medicine, Freiburg, Germany

2. University of Applied Sciences Offenburg, Offenburg, Germany

3. Phonak Communications AG, Murten, Switzerland

Abstract

AbstractPrevious research in cochlear implant (CI) recipients with bilateral severe-to-profound sensorineural hearing loss showed improvements in speech recognition in noise using remote wireless microphone systems. However, to our knowledge, no previous studies have addressed the benefit of these systems in CI recipients with single-sided deafness.The objective of this study was to evaluate the potential improvement in speech recognition in noise for distant speakers in single-sided deaf (SSD) CI recipients obtained using the digital remote wireless microphone system, Roger. In addition, we evaluated the potential benefit in normal hearing (NH) participants gained by applying this system.Speech recognition in noise for a distant speaker in different conditions with and without Roger was evaluated with a two-way repeated-measures design in each group, SSD CI recipients, and NH participants. Post hoc analyses were conducted using pairwise comparison t-tests with Bonferroni correction.Eleven adult SSD participants aided with CIs and eleven adult NH participants were included in this study.All participants were assessed in 15 test conditions (5 listening conditions × 3 noise levels) each. The listening conditions for SSD CI recipients included the following: (I) only NH ear and CI turned off, (II) NH ear and CI (turned on), (III) NH ear and CI with Roger 14, (IV) NH ear with Roger Focus and CI, and (V) NH ear with Roger Focus and CI with Roger 14. For the NH participants, five corresponding listening conditions were chosen: (I) only better ear and weaker ear masked, (II) both ears, (III) better ear and weaker ear with Roger Focus, (IV) better ear with Roger Focus and weaker ear, and (V) both ears with Roger Focus. The speech level was fixed at 65 dB(A) at 1 meter from the speech-presenting loudspeaker, yielding a speech level of 56.5 dB(A) at the recipient's head. Noise levels were 55, 65, and 75 dB(A). Digitally altered noise recorded in school classrooms was used as competing noise. Speech recognition was measured in percent correct using the Oldenburg sentence test.In SSD CI recipients, a significant improvement in speech recognition was found for all listening conditions with Roger (III, IV, and V) versus all no-Roger conditions (I and II) at the higher noise levels (65 and 75 dB[A]). NH participants significantly benefited from the application of Roger in noise for higher levels, too. In both groups, no significant difference was detected between any of the different listening conditions at 55 dB(A) competing noise. There was also no significant difference between any of the Roger conditions III, IV, and V across all noise levels.The application of the advanced remote wireless microphone system, Roger, in SSD CI recipients provided significant benefits in speech recognition for distant speakers at higher noise levels. In NH participants, the application of Roger also produced a significant benefit in speech recognition in noise.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3