Optimizing The Benefit of Sound Processors Coupled to Personal FM Systems

Author:

Wolfe Jace,Schafer Erin C.

Abstract

Background: Use of personal frequency modulated (FM) systems significantly improves speech recognition in noise for users of cochlear implants (CI). There are, however, a number of adjustable parameters of the cochlear implant and FM receiver that may affect performance and benefit, and there is limited evidence to guide audiologists in optimizing these parameters. Purpose: This study examined the effect of two sound processor audio-mixing ratios (30/70 and 50/50) on speech recognition and functional benefit for adults with CIs using the Advanced Bionics Auria® sound processors. Research Design: Fully-repeated repeated measures experimental design. Each subject participated in every speech-recognition condition in the study, and qualitative data was collected with subject questionnaires. Study Sample: Twelve adults using Advanced Bionics Auria sound processors. Participants had greater than 20% correct speech recognition on consonant-nucleus-consonant (CNC) monosyllabic words in quiet and had used their CIs for at least six months. Intervention: Performance was assessed at two audio-mixing ratios (30/70 and 50/50). For the 50/50 mixing ratio, equal emphasis is placed on the signals from the sound processor and the FM system. For the 30/70 mixing ratio, the signal from the microphone of the sound processor is attenuated by 10 dB. Data Collection and Analysis: Speech recognition was assessed at two audio-mixing ratios (30/70 and 50/50) in quiet (35 and 50 dB HL) and in noise (+5 signal-to-noise ratio) with and without the personal FM system. After two weeks of using each audio-mixing ratio, the participants completed subjective questionnaires. Results: Study results suggested that use of a personal FM system resulted in significant improvements in speech recognition in quiet at low-presentation levels, speech recognition in noise, and perceived benefit in noise. Use of the 30/70 mixing ratio resulted in significantly poorer speech recognition for low-level speech that was not directed to the FM transmitter. There was no significant difference in speech recognition in noise or functional benefit between the two audio-mixing ratios. Conclusions: Use of a 50/50 audio-mixing ratio is recommended for optimal performance with an FM system in quiet and noisy listening situations.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3