Author:
Bera Aniket,Kim Sujeong,Manocha Dinesh
Abstract
We present a novel interactive multi-agent simulation algorithm to model pedestrian movement dynamics. We use statistical techniques to compute the movement patterns and motion dynamics from 2D trajectories extracted from crowd videos. Our formulation extracts the dynamic behavior features of real-world agents and uses them to learn movement characteristics on the fly. The learned behaviors are used to generate plausible trajectories of virtual agents as well as for long-term pedestrian trajectory prediction. Our approach can be integrated with any trajectory extraction method, including manual tracking, sensors, and online tracking methods. We highlight the benefits of our approach on many indoor and outdoor scenarios with noisy, sparsely sampled trajectory in terms of trajectory prediction and data-driven pedestrian simulation.
Publisher
Forschungszentrum Julich, Zentralbibliothek
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献