Menge: A Modular Framework for Simulating Crowd Movement

Author:

Curtis Sean,Best Andrew,Manocha Dinesh

Abstract

We present Menge, a cross-platform, extensible, modular framework for simulating pedestrian movement in a crowd.  Menge's architecture is inspired by an implicit decomposition of the problem of simulating crowds into component subproblems.  These subproblems can typically be solved in many ways; different combinations of subproblem solutions yield crowd simulators with likewise varying properties.  Menge creates abstractions for those subproblems and provides a plug-in architecture so that a novel simulator can be dynamically configured by connecting built-in and bespoke implementations of solutions to the various subproblems.  Use of this type of framework could facilitate crowd simulation research, evaluation, and applications by reducing the cost of entering the domain, facilitating collaboration, and making comparisons between algorithms simpler.  We show how the Menge framework is compatible with many prior models and algorithms used in crowd simulation and illustrate its flexibility via a varied set of scenarios and applications.

Publisher

Forschungszentrum Julich, Zentralbibliothek

Subject

General Medicine

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precise and Reliable Localization of Mobile Robots in Crowds Using NDT-AMCL;2024 13th International Workshop on Robot Motion and Control (RoMoCo);2024-07-02

2. A literature review of dense crowd simulation;Simulation Modelling Practice and Theory;2024-07

3. MAC-ID: Multi-Agent Reinforcement Learning with Local Coordination for Individual Diversity;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

4. Adaptive Pedestrian Agent Modeling for Scenario-based Testing of Autonomous Vehicles through Behavior Retargeting;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. HyPedSim: A Multi-Level Crowd-Simulation Framework—Methodology, Calibration, and Validation;Sensors;2024-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3