Robust CAPTCHA Image Generation Enhanced with Adversarial Example Methods
Author:
Affiliation:
1. School of Computing, Korea Advanced Institute of Science and Technology
2. Department of Electrical Engineering, Korea Military Academy
3. Department of Computer and Information Security, Sejong University
Publisher
Institute of Electronics, Information and Communications Engineers (IEICE)
Subject
Artificial Intelligence,Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Link
https://www.jstage.jst.go.jp/article/transinf/E103.D/4/E103.D_2019EDL8194/_pdf
Reference11 articles.
1. [1] L.V. Ahn, M. Blum, N.J. Hopper, and J. Langford, “Captcha: Using hard ai problems for security,” International Conference on the Theory and Applications of Cryptographic Techniques, pp.294-311, Springer, 2003. 10.1007/3-540-39200-9_18
2. [2] E. Bursztein, M. Martin, and J. Mitchell, “Text-based captcha strengths and weaknesses,” Proceedings of the 18th ACM conference on Computer and communications security, pp.125-138, ACM, 2011. 10.1145/2046707.2046724
3. [3] A. Hindle, M.W. Godfrey, and R.C. Holt, “Reverse engineering captchas,” 2008 15th Working Conference on Reverse Engineering, pp.59-68, IEEE, 2008. 10.1109/wcre.2008.35
4. [4] R. Hussain, K. Kumar, H. Gao, and I. Khan, “Recognition of merged characters in text based captchas,” 2016 IEEE 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp.3917-3921, 2016.
5. [5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Generating Black-box Audio Adversarial CAPTCHAs based on Differential Evolution Algorithm;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08
2. Enhancing interpretability in the exploration of high-energy conversion efficiency in CsSnBr3−xIx configurations using crystal graph convolutional neural networks and adversarial example methods;Science China Materials;2024-03-07
3. Robust Text CAPTCHAs Using Adversarial Examples;2022 IEEE International Conference on Big Data (Big Data);2022-12-17
4. Restricted-Area Adversarial Example Attack for Image Captioning Model;Wireless Communications and Mobile Computing;2022-07-07
5. Statistical Detection of Adversarial Examples in Blockchain-Based Federated Forest In-Vehicle Network Intrusion Detection Systems;IEEE Access;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3