1. [1] H. Liu, Z. Dai, D.R. So, and Q.V. Le, “Pay attention to MLPs,” arXiv preprint arXiv:2105.08050, 2021. 10.48550/arXiv.2105.08050
2. [2] O. Yadan, K. Adams, Y. Taigman, and M.A. Ranzato, “Multi-gpu training of convnets,” 2015. arXiv preprint arXiv:1312.5853. 10.48550/arXiv.1312.5853
3. [3] S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H.P. Graf, “A programmable parallel accelerator for learning and classification,” 2010 19th Int. Conf. Parallel Architectures and Compilation Techniques, pp.273-283, Sept. 2010. 10.1145/1854273.1854309
4. [5] R.G. Girones R.C. Palero, J.C. Boluda, and A.S. Cortes“FPGA implementation of a pipelined on-line backpropagation,” J. VLSI signal processing systems for signal, image and video technology, vol.40, no.2, pp.189-213, 2005. 10.1007/s11265-005-4961-3
5. [6] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G. Yang, “F-CNN: An FPGA-based framework for training Convolutional Neural Networks,” IEEE 27th Int. Conf. Application-specific Systems, Architectures and Processors (ASAP), 2016. 10.1109/ASAP.2016.7760779