Latent Variable Based Anomaly Detection in Network System Logs
Author:
Affiliation:
1. Graduate School of Information Science and Technology, The University of Tokyo
2. National Institute of Informatics
3. Department of Informatics, Sokendai
Publisher
Institute of Electronics, Information and Communications Engineers (IEICE)
Subject
Artificial Intelligence,Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Link
https://www.jstage.jst.go.jp/article/transinf/E102.D/9/E102.D_2018OFP0007/_pdf
Reference24 articles.
1. [1] K. Otomo, S. Kobayashi, K. Fukuda, and H. Esaki, “Finding anomalies in network system logs with latent variables,” Proc. ACM SIGCOMM BIGDAMA'18, pp.8-14, 2018. 10.1145/3229607.3229608
2. [2] E. Baseman, S. Blanchard, and E. Zongzelimyuntedu, “Relational Synthesis of Text and Numeric Data for Anomaly Detection on Computing System Logs,” Proc. IEEE ICMLA'16, pp.2-5, 2016.
3. [3] J. Zhong, W. Guo, and Z. Wang, “Study on network failure prediction based on alarm logs,” Proc. ICBDSC'16, pp.23-29, 2016.
4. [4] M. Moh, S. Pininti, S. Doddapaneni, and T.-S. Moh, “Detecting Web Attacks Using Multi-stage Log Analysis,” Proc. IEEE IACC'16, pp.733-738, 2016. 10.1109/iacc.2016.141
5. [5] M. Shatnawi and M. Hefeeda, “Real-time failure prediction in online services,” Proc. IEEE INFOCOM'15, pp.1391-1399, 2015. 10.1109/infocom.2015.7218516
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Log Anomaly Detection by Leveraging LLM-Based Parsing and Embedding with Attention Mechanism;2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE);2024-08-06
2. Deep learning for anomaly detection in log data: A survey;Machine Learning with Applications;2023-06
3. Convolutional autoencoder based on latent subspace projection for anomaly detection;Methods;2023-06
4. Multi-datasource machine learning in intrusion detection: Packet flows, system logs and host statistics;Journal of Information Security and Applications;2022-08
5. Comparative Causal Analysis of Network Log Data in Two Large ISPs;NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium;2022-04-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3