1. [1] Y.T. Chong, J.L.Y. Koh, H. Friesen, S. Kaluarachchi Duffy, M.J. Cox, A. Moses, J. Moffat, C. Boone, and B.J. Andrews, “Yeast proteome dynamics from single cell imaging and automated analysis,” Cell, vol.161, no.6, pp.1413-1424, 2015. 10.1016/j.cell.2015.04.051
2. [2] B. Chidester, T. Zhou, M.N. Do, and J. Ma, “Rotation equivariant and invariant neural networks for microscopy image analysis,” Bioinform., vol.35, no.14, pp.i530-i537, 2019. 10.1093/bioinformatics/btz353
3. [3] D. Marcos, M. Volpi, and D. Tuia, “Learning rotation invariant convolutional filters for texture classification,” 23rd International Conference on Pattern Recognition, ICPR, pp.2012-2017, 2016. 10.1109/icpr.2016.7899932
4. [4] T. Cohen and M. Welling, “Group equivariant convolutional networks,” Proc. 33nd International Conference on Machine Learning, ICML, JMLR Workshop and Conference Proceedings, vol.48, pp.2990-2999, 2016.
5. [5] A.S. Ecker, F.H. Sinz, E. Froudarakis, P.G. Fahey, S.A. Cadena, E.Y. Walker, E. Cobos, J. Reimer, A.S. Tolias, and M. Bethge, “A rotation-equivariant convolutional neural network model of primary visual cortex,” 7th International Conference on Learning Representations, ICLR, 2019.