Machine Learning-Based Approach for Depression Detection in Twitter Using Content and Activity Features
Author:
Affiliation:
1. Dept. of Information Systems, Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
2. Information Systems Department, College of Computer and Information Sciences, King Saud University
Publisher
Institute of Electronics, Information and Communications Engineers (IEICE)
Subject
Artificial Intelligence,Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Link
https://www.jstage.jst.go.jp/article/transinf/E103.D/8/E103.D_2020EDP7023/_pdf
Reference35 articles.
1. [1] G. Shen, J. Jia, L. Nie, F. Feng, C. Zhang, T. Hu, T.-S. Chua, and W. Zhu, “Depression detection via harvesting social media: A multimodal dictionary learning solution,” IJCAI, pp.3838-3844, 2017. 10.24963/ijcai.2017/536
2. [2] D. Mowery, C. Bryan, and M. Conway, “Feature studies to inform the classification of depressive symptoms from twitter data for population health,” arXiv preprint arXiv:1701.08229, 2017.
3. [3] G. Coppersmith, M. Dredze, and C. Harman, “Quantifying mental health signals in twitter,” Proceedings of the workshop on computational linguistics and clinical psychology: From linguistic signal to clinical reality, pp.51-60, 2014. 10.3115/v1/w14-3207
4. [4] S.J. Stack, “Mental illness and suicide,” The Wiley Blackwell Encyclopedia of Health, Illness, Behavior, and Society, pp.1618-1623, 2014. 10.1002/9781118410868.wbehibs067
5. [5] M. De Choudhury, E. Kiciman, M. Dredze, G. Coppersmith, and M. Kumar, “Discovering shifts to suicidal ideation from mental health content in social media,” Proceedings of the 2016 CHI conference on human factors in computing systems, pp.2098-2110, ACM, 2016. 10.1145/2858036.2858207
Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An attention-based CNN-BiLSTM model for depression detection on social media text;Expert Systems with Applications;2024-09
2. Desenvolvimento de Ferramenta de Análise de Sentimentos para Identificação de Possíveis Sinais de Comportamento Depressivo na Rede Social Twitter;Revista Eletrônica de Iniciação Científica em Computação;2024-08-29
3. A survey on detecting mental disorders with natural language processing: Literature review, trends and challenges;Computer Science Review;2024-08
4. Mental Health Harmony: Insights from the Machine Learning Frontier;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18
5. The use of machine learning and deep learning models in detecting depression on social media: A systematic literature review;Personalized Medicine in Psychiatry;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3