An Efficient Method for Training Deep Learning Networks Distributed
Author:
Affiliation:
1. School of Computer Science, National University of Defense Technology
2. National Supercomputer Center in Guangzhou
3. School of Data and Computer Science, Sun Yat-sen University
Publisher
Institute of Electronics, Information and Communications Engineers (IEICE)
Subject
Artificial Intelligence,Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Link
https://www.jstage.jst.go.jp/article/transinf/E103.D/12/E103.D_2020PAP0007/_pdf
Reference37 articles.
1. [1] Z. Chen and X. Huang, “End-to-end learning for lane keeping of self-driving cars,” 2017 IEEE Intelligent Vehicles Symposium (IV), pp.1856-1860, 2017. 10.1109/ivs.2017.7995975
2. [2] Y. Goldberg, “A primer on neural network models for natural language processing,” J. Artif. Int. Res., vol.57, no.1, pp.345-420, Sept. 2016. 10.1613/jair.4992
3. [3] Y. Song, E.-L. Tan, X. Jiang, J.-Z. Cheng, D. Ni, S. Chen, B. Lei, and T. Wang, “Accurate cervical cell segmentation from overlapping clumps in Pap smear images,” IEEE Trans. Med. Imag., vol.36, no.1, pp.288-300, Jan. 2017. 10.1109/tmi.2016.2606380
4. [4] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in Neural Information Processing Systems 25, pp.1097-1105, Curran Associates, 2012.
5. [5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv 1409.1556, Sept. 2014.
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Load-Balancing Strategy Based on Multi-Task Learning in a Distributed Training Environment;2023 International Conference on Advances in Electrical Engineering and Computer Applications (AEECA);2023-08-18
2. Load Balancing Optimization for Transformer in Distributed Environment;2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS);2021-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3