1. [1] C. Zhao, Q. Sun, C. Zhang, Y. Tang, and F. Qian, “Monocular depth estimation based on deep learning: An overview,” Science China Technological Sciences, vol.63, no.9, pp.1612-1627, 2020. 10.1007/s11431-020-1582-8
2. [2] I.J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014. 10.48550/arXiv.1412.6572
3. [3] K. Yamanaka, R. Matsumoto, K. Takahashi, and S. Fujii, “Adversarial examples for monocular depth estimation [in Japanese],” IPSJ SIG Tech. Rep. AVM, 2019.
4. [4] Z. Zhang, X. Zhu, Y. Li, X. Chen, and Y. Guo, “Adversarial attacks on monocular depth estimation,” arXiv preprint arXiv:2003.10315, 2020. 10.48550/arXiv.2003.10315
5. [5] A. Mathew, A.P. Patra, and J. Mathew, “Monocular depth estimators: Vulnerabilities and attacks,” arXiv preprint arXiv:2005.14302, 2020. 10.48550/arXiv.2005.14302