A Nesterov's accelerated quasi-Newton method for global routing using deep reinforcement learning

Author:

S Indrapriyadarsini1ORCID,Mahboubi Shahrzad2ORCID,Ninomiya Hiroshi2ORCID,Kamio Takeshi3ORCID,Asai Hideki4ORCID

Affiliation:

1. Graduate School of Science and Technology, Shizuoka University

2. Graduate School of Electrical and Information Engineering, Shonan Institute of Technology

3. Graduate School of Information Sciences, Hiroshima City University

4. Research Institute of Electronics, Shizuoka University

Publisher

Institute of Electronics, Information and Communications Engineers (IEICE)

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,General Medicine

Reference27 articles.

1. [1] R.S. Sutton and A.G. Barto, “Reinforcement learning: An introduction,” MIT Press, Cambridge, MA, 1st edition, March 1998.

2. [2] C.J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279-292, May 1992.

3. [3] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, February 2015.

4. [4] T. Tieleman and G. Hinton, “Lecture 6.5 - RMSProp,” COURSERA Neural Networks for Machine Learning, Technical report, 2012.

5. [5] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, December 2014.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reinforcement learning for multi-agent with asynchronous missing information fusion method;International Journal of Machine Learning and Cybernetics;2024-06-07

2. Continuous deep Q-learning with a simulator for stabilization of uncertain discrete-time systems;Nonlinear Theory and Its Applications, IEICE;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3