1. [1] K. He, et al.: “Deep residual learning for image recognition,” Proceedings of 2016 IEEE Conference on Computer Vision And Pattern Recognition (2016) 770 (DOI: 10.1109/cvpr.2016.90).
2. [2] T. Young, et al.: “Recent trends in deep learning based natural language processing,” IEEE Comput. Intell. Mag. 13 (2018) 55 (DOI: 10.1109/mci.2018.2840738).
3. [3] G. Hinton, et al.: “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29 (2012) 82 (DOI: 10.1109/MSP.2012.2205597).
4. [4] Y. LeCun, et al.: “Deep learning,” Nature 521 (2015) 436 (DOI: 10.1038/nature14539).
5. [5] J. Pei, et al.: “Towards artificial general intelligence with hybrid Tianjic chip architecture,” Nature 572 (2019) 106 (DOI: 10.1038/s41586-019-1424-8).